Павел Корякин, 7 Марта 2018

Успевать в два раза больше, избавившись от клиентов-нытиков с помощью корреляционного анализа

В ежедневной рутине вы перестаёте видеть, что 70% времени тратите на клиентов или проекты, с которых ничего не зарабатываете — что делать?


Метод сложноват, потребуется вникнуть на минут 30. Материал будет полезен только менеджерам проектов, особенно в сфере интернет-маркетинга, поэтому если сейчас некогда, то отложите статью в сторону. Материал узконаправленный, но поделиться идеей хочется.

Данные для анализа

Подготовка данных для исследования

Создаёте таблицу, где по строкам проекты, а по столбикам проблемы или признаки проектов, так у нас получается матрица с проектами и проблемами.

Каждый проект оцениваем на предмет наличия проблемы (или признака), например, в одном проекте проблема в отсутствии отчётности по лидам, из-за этого мы не можем оценить эффективность контекстной рекламы, и это создаёт «узкое место» проекта — ставим единицу.

Данные для анализа 2

Нюансы

  • Нужно написать примерно 20 проблем, минимум десять. Если 30, то это усложнит процесс.
  • Минимум десять проектов, мы взяли 30.

Каждая проблема в том или ином образе присутствует в каждом проекте, здесь два правила:

  • Ограничиваем количество единичек для одного проекта, например, максимум десять, если всего столбиков 20.
  • Чтобы понять, много времени тратится на переговоры или мало, нужно сравнить их относительно других проектов. Если один проект занимает половину времени менеджера, то, скорее всего, это много, и проблема есть.
  • Если у вас есть числовые значения времени, то можно поставить единицы проектам, которые занимают 50-80% времени, если это прибыль, то единицы проектам, которые приносят 80% прибыли.

Помимо проблем, можно добавить сторонние признаки, чтобы далее понять, что с чем коррелирует.

Данные для анализа 3
Возникли трудности?

Мы можем помочь вам настроить яндекс директ, оставьте заявку или напишите в чат.

Суммируем проблемы

Считаем наиболее распространённые проблемы, то есть сколько раз проблема встречалась в проектах.

Данные для анализа 4

Далее транспонируем («переворачиваем» строку в столбик) строки с названиями проблем и частотой на другой лист, сортируем их по сумме.

Данные для анализа 5

Видим, какие проблемы встречаются чаще, но пока ещё не начинаем рубить с плеча, а идём дальше. Дело в том, что мы видим «Итерация > 2 недель», но нужно понять первопричины, то есть «Итерация > 2 недель» — это следствие, а не причина.

Корреляционный анализ

Создаём новую вкладку и на ней подготавливаем данные для корреляционного анализа. Для этого нужно просто в пустые ячейки добавить нолики.

Данные для анализа 6

Сами расчёты можно провести стандартным Excel-инструментом Data Analysis (анализ данных).

Данные для анализа 7

Выделяем данные, ставим чекбоксы, как на скриншоте, и считаем.

Данные для анализа 8

В новой таблице мы получим матрицу, где каждая проблема сравнивается с другой, а в ячейке пересечения указано значение корреляции.

Данные для анализа 9

Корреляция может принимать значение от -1 до +1, об этом есть хороший обзор в интернете, повторяться не будем. Матрица показывает, как сильно одни проблемы провоцируют другие.

Например, в ячейке пересечения «Много ресурсов на переговоры» с «Клиент не пользуется системой управления задачами и мессенджером» значение равняется 0,8.

Следовательно, мы можем сделать утверждение, что часто клиенты, которые не пользуются системой управления задачами и мессенджером, требуют больше времени менеджера, что логично.

Если значение -0,8, то результат обратный: клиенты не требуют времени менеджера.

Используем условное форматирование и добавляем градиент значениям от 0,4 до 1, чтобы выделить только те пересечения, где есть корреляция.

Данные для анализа 10

Получаем

Данные для анализа 11

Добавляем столбик «Частота» к каждой проблеме, чтобы понимать вес проблемы в виде частоты её возникновения, который мы рассчитывали ранее, и тоже делаем градиент.

Данные для анализа 12

Интерпретируем

Даже при беглом просмотре видно, что одни проблемы чаще коррелируют с другими. То есть проблема «Много ресурсов на переговоры» обычно сопровождается комплексом других проблем, наша задача — выявить самые большие пучки проблем, как с первой по четвёртую проблемы на рисунке.

Визуализация проблем

Если подумать над визуализацией, то можно провести линии по зелёным ячейкам, отражая их вниз от единицы, и посмотреть, где чаще пересекаются эти линии — пересечения выделены красными кружками на скриншоте.

Данные для анализа 13

В нашем случае это ярко выраженная корреляция между пунктами:

  • Отсутствие отчётности до лидов.
  • Клиент не пользуется Asana (система управления задачами) и мессенджером.
  • Клиент имеет низкую компетенцию в интернет-маркетинге.
  • Низкая конверсия посадочной страницы или плохое качество страницы.
  • Много ресурсов на переговоры, сложные переговоры.
  • Простои из-за отсутствия решений и обратной связи.
  • Клиент генерирует большое количество незначительных обращений и гипотез.

В данном случае бесполезно бороться с каждой причиной по отдельности, нужно принимать комплексное решение и бороться с первоисточником, например:

  • Скоринг проектов на старте на предмет компетенции клиента и качества его проекта поможет отсеять некачественные проекты, которые требуют много времени и имеют низкую окупаемость.
  • Обязательное условие использования отчётности до лидов избавит от вопросов: сколько мы потратили, сколько было продаж.
  • Обязательное использование системы управления задачами сократит время на коммуникацию.

Простое ограничение времени на переговоры здесь бы не подошло, такое ограничение не лечит первопричину. После внедрения поинтов выше часть лидов стала отсеиваться, но эффективность команды возросла в разы.

Параллельно есть и другой класс решений, который направлен на образование клиентов, которые не прошли скоринг.

  • Делаем обучающие материалы, чтобы в лучшем случае дать клиенту пошаговую инструкцию по решению проблемы.
  • На старте указываем на необходимые условия для старта: новый сайт, чтение образовательных статей, но это скорее фантастика.

Была замечена ещё одна корреляция.

  • Проект попадает в пул проектов, генерирующих 50% прибыли.
  • KPI проекта выше среднего.

Она говорит о том, что мы зарабатываем, только если клиент тоже зарабатывает.

Не берусь говорить, что это эффективная методика, так как специалисту, скорее всего, будет лень самостоятельно применять её на практике, но имеет место.

Предполагаю, что модель можно использовать не только для исследования в плоскости проблем, но и в других случаях, например, можно добавить более детальную информацию:

  • Количество комментариев задач в проекте.
  • Промежуток времени между комментариями к задачам.
  • Ресурсы времени на задачи.
  • Размер команды.
  • Источник клиента (SEO, конференция и прочее).
  • Маркетолог или собственник.

Можно выявить закономерности, чтобы использовать данные в маркетинговых активностях и в оптимизации производства.

Подпишитесь на Facebook или Телеграмм, чтобы не пропустить новые статьи
Другие материалы по теме
Как сделать веб-аналитику для SaaS через Google Analytics: введение и отслеживание воронки HOWTO
Как сделать веб-аналитику для SaaS через Google Analytics: введение и отслеживание воронки
Столкнулись с тем, что на нескольких SasS проектах не было нормальной аналитики для отслеживания и ведения воронки. Для решения задач выше выбрали Google Analytics.
Как сделать сквозную аналитику, кроме ROISTAT HOWTO
Как сделать сквозную аналитику, кроме ROISTAT
У нас поток проектов и всем нужно сводить расходы на рекламу с выручкой, у нас есть основных 5 решений, о которых я расскажу ниже.
Cквозная аналитика: AmoCRM с Google Analytics за пару часов HOWTO
Cквозная аналитика: AmoCRM с Google Analytics за пару часов
Как интегрировать AmoCRM с Google Analytics бесплатно без помощи программисто за пару часов, пошаговая инструкция. Как посчитать LTV каналов.
Сквозная аналитика: вручную за 15 минут HOWTO
Сквозная аналитика: вручную за 15 минут
Как вручную свести данные о продажах по источникам трафика.
Как настроить автоматическую отчетность по РСЯ-площадкам в разрезе конверсий и CPA HOWTO
Как настроить автоматическую отчетность по РСЯ-площадкам в разрезе конверсий и CPA
Как сводить конверсии и расходы по РСЯ-площадкам в Google Analytics.
Как вручную свести конверсии и их стоимость по площадками РСЯ в Google Analytics HOWTO
Как вручную свести конверсии и их стоимость по площадками РСЯ в Google Analytics
Как вручную свести расходы и конверсии в разрезе РСЯ площадок. Для этих целей рекомендуем работать в Google Analytics.
читать наш блог

Оставьте заявку

После того, как вы оставите заявку: интервью ~15 минут → гостевые доступы для аудита ~15 минут → аудит в течении 2-х дней → согласование предложения → начало первой итерации. По нашему опыту реально начать что-то делать уже через 2-3 дня.

Менеджер проектов Александр
Александр

Менеджер проектов



Пишите на — info@1jam.ru , звоните в скайпе — jam.agency , или по телефону — 8 (800) 551-85-03